Behavior of Human Glioblastoma Cells Formylpeptide Receptor Exacerbates the Malignant Transactivation of the Epidermal Growth Factor Receptor by Updated Version
نویسندگان
چکیده
The G protein-coupled formylpeptide receptor (FPR), which mediates leukocyte migration in response to bacterial and host-derived chemotactic peptides, promotes the chemotaxis, survival, and tumorigenesis of highly malignant human glioblastoma cells. Because glioblastoma cells may also express other receptors for growth signals, such as the epidermal growth factor (EGF) receptor (EGFR), we investigated the role of EGFR in the signaling cascade of FPR and how two receptors cross-talk to exacerbate tumor growth. We found that N-formyl-methionyl-leucyl-phenylalanine, an FPR agonist peptide, rapidly induced EGFR phosphorylation at tyrosine residue (Tyr) 992, but not residues 846, 1068, or 1173, in glioblastoma cells, whereas all these residues were phosphorylated after only EGF treatment. The FPR agonist-induced EGFR phosphorylation in tumor cells was dependent on the presence of FPR as well as GAi proteins, and was controlled by Src tyrosine kinase. The transactivation of EGFR contributes to the biological function of FPR in glioblastoma cells because inhibition of EGFR phosphorylation significantly reduced FPR agonist-induced tumor cell chemotaxis and proliferation. Furthermore, depletion of both FPR and EGFR by short interference RNA abolished the tumorigenesis of the glioblastoma cells. Our study indicates that the glioblastoma-promoting activity of FPR is mediated in part by transactivation of EGFR and the cross-talk between two receptors exacerbates the malignant phenotype of tumor cells. Thus, targeting both receptors may yield antiglioblastoma agents superior to those targeting one of them. [Cancer Res 2007;67(12):5906–13]
منابع مشابه
Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells.
The G protein-coupled formylpeptide receptor (FPR), which mediates leukocyte migration in response to bacterial and host-derived chemotactic peptides, promotes the chemotaxis, survival, and tumorigenesis of highly malignant human glioblastoma cells. Because glioblastoma cells may also express other receptors for growth signals, such as the epidermal growth factor (EGF) receptor (EGFR), we inves...
متن کاملMolecular Docking Based on Virtual Screening, Molecular Dynamics and Atoms in Molecules Studies to Identify the Potential Human Epidermal Receptor 2 Intracellular Domain Inhibitors
Human epidermal growth factor receptor 2 (HER2) is a member of the epidermal growth factor receptor family having tyrosine kinase activity. Overexpression of HER2 usually causes malignant transformation of cells and is responsible for the breast cancer. In this work, the virtual screening, molecular docking, quantum mechanics and molecular dynamics methods were employed to study protein–ligand ...
متن کاملAssessment of epidermal growth factor receptor status in glioblastomas
Objective(s): Our previous study showed that a newly designed tracer radioiodinated 6-(3-morpholinopropoxy)-7-ethoxy-4-(3'-iodophenoxy)quinazoline ([125I]PYK) is promising for the evaluation of the epidermal growth factor receptor (EGFR) status and prediction of gefitinib treatment of non-small cell lung cancer. EGFR is over-expressed and mutated also in glioblastoma. In the present study, the ...
متن کاملExpression of Epidermal Growth Factor Receptor and the association with Demographic and Prognostic Factors in Patients with Non-small Cell Lung Cancer
Introduction: Growth, proliferation, survival, and differentiation are the prominent characteristics of cells, which are affected by cancer. Epidermal growth factor receptor (EGFR) plays a pivotal role in the effective control of these features. Given the significance of EGFR signaling pathway in non-small cell lung cancer (NSCLC), EGFR expression is influential on these cell characteristics. I...
متن کاملANTISENSE RNA TO THE TYPE I INSULIN-LIKE GROWTH FACTOR RECEPTOR REVERSED THE TRANSFORMED PHENOTYPE OF PC-3 HUMAN PROSTATE CANCER CELL LINE IN VITRO
The insulin-like growth factor I receptor (IGF-IR) plays an essential role in the establishment and maintenance of transformed phenotype. Interference with the IGF-IR pathway by antisense causes reversal of the transformed phenotype in many rodent and human tumor cell lines. We stably transfected the PC-3 human prostate cancer cell line with an IGF-IR antisense RNA expression plasmid. The ...
متن کامل